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SUMMARY
This paper examines the characteristics of channel wave
propagation in a waveguide formed by two parallel fractures
using two-dimensional elastic finite difference simulation and
mode analysis. Velocity dispersion of the fracture channel
waves computed from f-k analysis of the synthetic waveforms
shows good agreement with the mode solution. The dispersion
characteristics of the fracture channel waves are compared to
those for classic Rayleigh channel waves in a low velocity
layer with properties selected so that the S-wave acoustic
impedance of the layer matches that of the fracture waveguide at
the central frequency of the source. Significantly different
velocity-frequency behavior for the various modes was
observed for the two types of waveguides. In addition, the
fracture waveguide shows high-frequency thickness resonances
in the vicinity of the source.

INTRODUCTION
In recent years, fractures in tight reservoir rocks have been

recognized as major conduits for oil and gas production.
Optimal well placement and production require a knowledge of
characteristics such as fracture dimensions, aperture, and
compliance. A basic challenge is to determine these geometrical
and physical properties from seismic measurements.

Schoenberg (1980) and Pyrak-Nolte et al. (1987, 1990) have
demonstrated that thin, compliant features such as fractures
possess an acoustic impedance, I frac =κ /ω , which is

different from the host rock, Ihost = ρc , where k is the fracture
stiffness [stress/length], w is the angular frequency of the wave,
and ρ and c are the density and velocity of the host rock.  The
impedance contrast between the fracture and host rock
determines the seismic visibility of the fracture:
Ihost / I frac = (ρcω ) /κ . This relation shows that the seismic

visibility of the fracture is dependent on both its stiffness and
the frequency of the wave, the effect being largest when the
fracture stiffness is low compared to the product of the acoustic
impedance of the host rock times the frequency of the wave.

Because fractures possess a frequency-dependent acoustic
impedance, a variety of interesting elastic wave phenomena
have been demonstrated to exist for wave propagation across
and along single fractures. These effects include frequency-
dependent transmission and reflection, including wave
conversions, and dispersive fracture interface wave
propagation. Since fractures typically appear as sets of nearly
parallel planar features, it is of importance to determine the
seismic response of waves traveling between fractures. The
objective of this paper is to demonstrate that parallel fractures

form an elastic waveguide that supports a family of channel
waves which can be viewed as generalized Rayleigh-Lamb
plate waves for the case when the plate is sandwiched between
two halfspaces through normal and tangential springs. in
addition, several interesting properties of fracture channel
waves which differ from conventional Rayleigh channel waves
supported by a low velocity layer are shown for the first two
lowest order symmetric modes.

ELASTIC FINITE DIFFERENCE CODE FOR
FRACTURED ROCK

Numerical simulations of elastic wave propagation in a
medium with two parallel fractures were performed using a two-
dimensional, elastic, staggered grid finite difference code
(Virieux, 1986) code which uses fourth-order differencing in
space, and second-order differencing in time (Levander, 1988).
Fractures can be integrated into the finite difference code either
as cells with anisotropic properties chosen to exactly replicate
the normal and tangential fracture stiffnesses or by explicitly
applying the displacement-discontinuity boundary conditions
across neighboring grid cells (Coates and Schoenberg, 1995).
For fractures that are aligned with the finite difference grid, the
latter approach is the simplest and is the approach used in this
paper.

For a planar fracture located in the x-y plane, the
displacement-discontinuity boundary conditions for a fracture
are (Schoenberg, 1980; Pyrak-Nolte et al., 1990):
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where u is the particle displacement, τ is the stress, and κ is the
fracture stiffness in units of [Pa/m], and the superscripts + and -
refer to opposite sides of the fracture. The displacement-
discontinuity boundary conditions are a generalized boundary
condition in the sense that they degenerate to the boundary
condition for a welded interface as κ → ∞  and for a free-surface
as κ → 0 . Laboratory ultrasonic measurements of wave
transmission across a single fracture (Pyrak-Nolte et al., 1990;
Hsu and Schoenberg, 1988) and fracture interface wave
propagation along a single fracture (Pyrak-Nolte et al., 1992;
Roy and Pyrak-Nolte, 1995) have demonstrated that this model
provides a good description of the dynamic behavior of a
fracture.
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Numerical Model
The geometry of the models used for numerical simulations

are (a) for a fracture waveguide; two parallel fractures with
identical stiffness embedded in a homogeneous background
medium and spacing between fractures is 2λ (P-wave
wavelength λ) and  (b) for a velocity-contrast waveguide with
layer thickness and P- and S-wave transmission coefficients
identical to case (a). For both waveguides, a single explosion
source with a central frequency of 374Hz was located at the
center of the layers. The velocity of the source was provided by
the first derivative of a Gaussian function. Absorbing boundary
conditions were applied along all four boundaries of the
computational domain.

For the fracture waveguide, fractures were modeled by
internal boundaries with displacement-discontinuity boundary
conditions. Normal and tangential stiffnesses of the fractures
were assumed to be identical (κ zx = κ zz ). Two different

stiffnesses were used for simulations, one yielding a normal
incident P-wave transmission coefficient (at 374 Hz) equal to

0.6 (κ zx = κ zz =7.8x109Pa/m) and the other a transmission

coefficient equal to 0.9 (κ zx = κ zz =2.2x1010Pa/m). Spacing
between the fractures was set to twice the P-wave wavelength

at 374 Hz. The density of the host medium was 2000 kg/m3; P-
and S-wave velocities were 3740 m/sec and 2496 m/sec,
respectively.

Numerical simulations were also conducted for a low
velocity layer bounded by upper and lower half-spaces with
identical material properties. Both the layer thickness and
properties were chosen identical to those of the fracture
waveguide. For the halfspaces, the material density was fixed
and the P- and S-wave velocities increased to give the same
normal incidence transmission coefficients used in the fracture
waveguide simulations.

Snapshots
Snapshots taken at t=62 msec for the P-wave transmission

coefficient of 0.6 case for both types of waveguides are shown in
Figure 1. It can be seen that the velocity-contrast waveguide
traps the wave energy more efficiently than the fracture
waveguide. For the fracture waveguide, the wavefront outside
the layer propagates slightly slower than inside the layer due
to the frequency-dependent time delay the wave experiences as
it crosses the fracture. 

The wavefield around the fracture waveguide is also
characterized by strong head waves. The head waves are
generated as a result of interaction between the propagating P-
wave wavefront inside and outside the waveguide and fractures.
For the velocity-contrast waveguide, no significant head waves
were generated.

Snapshots for the vertical component of the waves (Fig. 1b)
show strong high-frequency reverberation near the source in
the fracture waveguide. This is due to the reflection of high-
frequency waves by the fracture. The velocity-contrast
waveguide, on the other hand, does not show such
reverberations.

Dispersion Analysis
For both the fracture and velocity-contrast waveguide, a

channel wave in the waveguide consists of multiple modes with
different velocities. Therefore, by examining the dispersion
relations in a measured seismogram, the modal structure of the
wave can be determined.

For this purpose, an array of receivers were located along
the center of the waveguides 12 wavelengths from the source.
By applying f-k (frequency-wavenumber) analysis to the
seismograms measured at different horizontal offsets, the
velocity dispersion of the wave can be computed. The synthetic
seismograms and corresponding f-k plots for both waveguides
are shown in Figure 2 and Figure 3 for the 0.6 transmission
coefficient case. In the f-k plots, the slope of each curve
represents the velocity dispersion behavior of the various
channel wave modes. The modal structure of wave for the
fracture waveguide can be seen clearly. However, for the
velocity-contrast waveguide, individual modes cannot be
clearly distinguished. It is also noticed that the fracture channel
waves high frequencies than the velocity contrast waveguide. 

The phase velocities for the lowest-order symmetric mode
are shown in Figure 4, also shown are the analytic predictions
obtained from mode analysis (Nihei et al., 1998). Good
agreement between the numerical and mode analysis results
demonstrates the accuracy of the numerical code. Mode analysis
of the fractured waveguide shows the fracture channel waves to
be generalized Rayleigh-Lamb plate waves. This simulation
confirms that such waves can be generated by a simple point
explosion source, as should be expected.

To examine the characteristics of the wavefield of the
fracture waveguide near the source, the receiver array was
moved to four wavelengths from the source. f-k analysis of the
wavefield reveals the existence of leaky modes that result from
multiply reflected  waves (Fig. 5).  The phase velocities of these
leaky modes can be seen to be extensions of the true normal
modes above the shear wave velocity.  Because of the finite
offset between source and receiver, it is not possible to see the
continuation of these waves to near vertical incidence, as
present in the snapshot in Figure 1.  The complexity of the
wavefield near the source in the fracture waveguide results from
the frequency-dependent reflectivity of multiple parallel
fractures.

CONCLUSIONS
This numerical investigation demonstrates that the velocity

dispersion of the fracture channel waves computed from f-k
analysis of the synthetic waveforms is in good agreement with
the mode solution. The fracture channel waves are shown to be
generalized Rayleigh-Lamb plate modes that propagate as
normal modes below the shear wave velocity and as leaky
modes above the shear wave velocity.

The dispersion characteristics of the fracture channel waves
are compared to those for classic Rayleigh channel waves in a
low velocity layer with properties selected such that the S-
wave acoustic impedance of the layer match that of the fracture
waveguide at the central frequency of the source. Significantly
different velocity-frequency behavior for the various modes was
observed for the two types of waveguides; in addition, the
fracture waveguide shows high-frequency thickness resonances
near the source.  These differences can be attributed to the
frequency-dependent acoustic impedance of the fractures.

NUMERICAL SIMULATIONS
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Figure 1 Examples of snapshots taken at t=62msec for waves propagating in (left) velocity-contrast and (right) fracture waveguides. P-wave
transmission coefficient of the boundaries between waveguides and the surrounding medium is T=0.6. Location of the explosion source is
indicated by a star.  
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Figure 2 Examples for vertical components of velocities measured at far field (receivers farther than 12 wavelengths from the source) for
(left) the velocity-contrast and (right) fracture waveguides with transmission coefficient of 0.6.
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Figure 3 Examples for f-k diagram at far-field for (left) velocity contrast waveguide and (right) fracture waveguide with P-wave transmission
coefficient of T=0.6. The spectra were computed from the seismogram measured at far-field shown in Figure 2.
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Figure 4 Phase velocity dispersion  at far-field for fracture waveguide obtained by f-k analysis. Dispersion relation from the numerical
simulations are shown by solid (transmission coefficient T=0.9) and open (T=0.6) triangles. Analytic modal solutions from a plane wave
analysis are also shown in solid line (T=0.6) and broken line (T=0.9).
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Figure 5 f-k analysis for the fracture waveguide with a transmission
coefficient of 0.6  an array of receivers  located along the center of
the waveguides for four wavelengths from the source
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Figure 6. Phase velocity dispersion  at near-field for fracture
waveguide obtained by f-k analysis. Dispersion relation from the
numerical simulations are shown by solid (transmission coefficient
T=0.6) and open (T=0.9) triangles with dash line. Analytic modal
solutions from a plane wave analysis are also shown in solid line
(T=0.6 and 0.9).
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